Myron L Meters

The most accurate, reliable, easy-to-use meters on the market...now available at MyronLMeters.com. ORP meters, pH meters, dialysate meters, conductivity meters, resistivity meters, TDS meters, inline monitors and controllers, standard buffer solutions, Ultrameter, Pool Pro, AG-5, and more...10% off when you order online.

How an Ultrameter II 6P Helps Map Fluoride Contamination in Ghana: MyronLMeters.com

The need for safe drinking water in rural Ghana inspired Katherine Alfredo, a graduate student at the University of Texas at Austin to propose a project for a Fulbright Fellowship. The purpose of the fellowship was to map the extent of the fluoride concentration in the Bongo District of the Upper Eastern Region for use by local authorities and eventually use the data collected in the development of a cost-effective defluoridation filter for existing capped wells.

In rural areas, groundwater is plentiful, but natural geographic contamination by inorganic contaminants like iron, manganese and fluoride render government sponsored boreholes useless. Fluoride in the Upper East, Upper West and Northern regions of Ghana often exceeds the general WHO recommended limit of 1.5 mg/liter.

Katherine began her research by observing and recording local water usage habits. She conducted borehole water usage counts on centrally and non-centrally located borehole sites tracking the quantity of water collected daily. Coupling this data with familial compound water usage surveys she was able to begin understanding the volumetric demand placed on each borehole daily and how that volume translates to the household level.

A one-liter sample of water was retrieved for testing and used for all the water quality tests. An aliquot of the sample water was placed in an Ultrameter II 6P to measure pH, ORP, conductivity, total dissolved solids and temperature.

Conductivity readings from the Ultrameter II will be used to simulate influent water containing excessive levels of fluoride in Katherine’s laboratory. Using Bongo as a design test case, Katherine plans to adjust the ionic strength of her synthetic influent to reflect that seen in the Bongo District.

Ultrameter II TDS readings were used as a quality indicator of water as it was dispensed from a borehole. The amount of all dissolved solids is important in determining the potential for interference and competition for adsorption sites on the aluminum adsorbents. Preventing any ions from competing for active sites on alumina surfaces will greatly increase the efficiency of filtration.

ORP readings taken by the Ultrameter II gave a good indicator of the general biological activity in the water. Additional testing was performed using two 2 mL tubes filled with sample water to measure nitrate/nitrite and ammonia using test strips. In another 2 mL tube a 1:1 dilution of the sample was created using distilled water to measure alkalinity using test strips.

Using a 0.45 micron filter, a 30 mL or 60 mL sterile plastic bottle was completely filled for fluoride concentration testing later in the laboratory.

Each capped borehole, new borehole, or nonfunctional borehole that was visited had its corresponding borehole identity recorded in a handheld GPS device. After each governance was covered, eight capped boreholes were chosen for water quality testing to be compared to the nearby functional boreholes.

At the time of Katherine’s departure, she had reported the pH and fluoride concentration of each well to the two water and sanitation government agencies in the Bongo area—The Community Water and Sanitation Agency and The Bongo District Assembly Water and Sanitation Team.

Katherine continues to analyze data recorded in Ghana and experiment with cost-effective solutions for fluoride removal in rural communities.

Find out more about the Ultrameter II 6P.

How an Ultrameter II 6P Helps Map Fluoride Contamination in Ghana: MyronLMeters.com was originally published on Myron L Meters Blog

Expert Manages Storm Water Discharge in Active Construction Sites With Ultrameter II 6P: MyronLMeters.com

tumblr_mrw572B3Q81qgr3lpo4_250

Mike Alberson, an expert in storm water pollution prevention, uses the Myron L Ultrameter II 6P to meet new and existing state and federal requirements for storm water monitoring. He checks for the presence of pollutants by testing the levels of total dissolved solids (TDS) and conductivity. He also tests storm water pH levels in accordance with NPDES guidelines implemented in California in 2010 that mandate pH testing for all Risk Level 2 and 3 sites.

Though TDS and conductivity do not indicate the presence of any specific contaminant, monitoring these parameters is a good way to determine an increase in the concentration of dissolved chemical constituents generally. High conductivity or TDS levels are a red flag to Alberson to investigate potential sources of pollution.

Chemicals used in landscaping, such as herbicides, pesticides and fertilizers, as well as materials such as cement, can all potentially dissolve into storm water runoff. Additionally, acidic or basic pollutants impact the quality of water by altering the pH of the runoff. Monitoring is required because altering the pH alters the types and amounts of all chemical constituents in runoff and, thereby, its toxicity. Changes in pH also impact the ecosystem directly when they exceed the narrow range required by biota to live in the receiving waters. The new California NPDES requirements have set a pH range limit of 6.5 to 8.5 pH Units

The State Water Quality Board’s overall goal in implementing increased monitoring and reporting requirements is to evaluate the effectiveness of Best Management Practices (BMPs) on effluent pollution and the impact that construction activities have on receiving waters. Developers and inspectors like Alberson are continually challenged with preventing potential pollutants from leaving the project sites, and when that happens, they need to remediate any adverse affects on the environment.

As a prerequisite to construction, the Developer of Plan must generate and gain approval of BMPs and Storm Water Pollution Prevention Plans (SWPPPs) which take into account the nature of the project’s building schedule, phasing of the project, building materials, the projected rainfall, the percentage of impervious cover on the project and the impact that potential storm water runoff could have on receiving waters.  The plans must also address the required monitoring and critical indicators of specific pollutants projected to discharge from the project site.

The site storm water inspector has to ensure that the necessary BMPs are implemented throughout the length of the project, as defined by the project SWPPP plan, which addresses project-specific site conditions and risk level determinations.  Alberson uses the meter frequently on Barnhart Balfour Beatty projects as most fall into a category of Risk Level 2, which now requires pH monitoring along during a rain event of 0.5 in. or more.

New California requirements have required all SWPPP developers and inspectors to be certified by the state since Sept. 2, 2011 via a special course given by designated State Trainers of Record (TOR). Alberson is designated as a TOR and offers California’s new Qualified SWPPP Practitioner and Qualified SWPPP Developers courses.

As a trainer, Alberson passes on knowledge gained from his own experience. Through the years, he has seen inspectors send water samples off to laboratories for analysis, the results of which would not be known for up to two weeks. In addition, the pH of these samples would change in the time it took to get the samples to the labs for analysis. Alberson now trains developers and inspectors to use the Myron L Ultrameter II to immediately measure pH, thereby ensuring storm water runoff on project sites is precisely monitored for potential pollutants in real time.

In his own work as an inspector, Alberson has used the Myron L Ultrameter II to respond to potential pollution issues as they arise. For example, at Barnhart Balfour Beatty’s Otay Ranch Village #6 Elementary School project in Otay Mesa, Calif., he developed a remediation solution that prevented environmental contamination from high pH runoff resulting from a required lime treatment of the campus soil. By performing onsite testing following a rain event, Alberson was able to determine the potential runoff had a pH level of 12.5.  He decided to immediately utilize a retention pond with carbon dioxide percolation control techniques. His remediation tactic worked using the meter to continuously monitor the pH until it was at a level acceptable for release into the receiving waters.

Expert Manages Storm Water Discharge in Active Construction Sites With Ultrameter II 6P: MyronLMeters.com was originally published on Myron L Meters Blog

Ultrapens



ULTRAPENS

3 Great Reasons To Use Them

1) Ultrapens are TOUGH. The Ultrapen body is made of aircraft aluminum and is rugged enough to withstand an occasional drop. We highly recommend them as a field backup to your lab meters,

2) Ultrapens are ACCURATE – they have the same range and accuracy as an Ultrameter.

3) Ultrapens are light and PORTABLE – perfect for pool service techs, hydroponics growers, or anyone who regularly takes field measurements.

Check out the Ultrapen PT1

“Myron L’s PT1 Ultrapen makes water testing a piece of cake! Temperature, TDS and salinity in my pocket at all times with results in a matter of seconds! Convenient and reliable… Love this thing!”

Check Out The Ultrapen PT2
 

“The Ultrapen PT2 is compact, reliable, easy to use and so far seems very durable while riding in its carry case between measurements. I use it daily and it reliably delivers PH and temperature.”

Check Out The Ultrapen PT3

A true one-handed instrument, the PT3 is easy to calibrate and easy to use. To take a measurement, you simply push a button then dip the PT3 in solution. Results display in seconds.

Check Out The Ultrapen PT4

ULTRAPEN PT4 Free Chlorine and Temperature Pen. Save 10% NOW – Now In Stock. Advanced features include highly stable microprocessor-based circuitry; automatic temperature compensation from 15ºC to 30ºC while in calibration mode; user-intuitive design; and waterproof housing.

Check Out Ultrapen Set, Combo, Complete, Splash: Field Sets for Water Pros and Pool Techs
 

ULTRAPEN Complete – PT1, PT2, PT3, PT4 – Conductivity, TDS, Salinity, pH, ORP, Free Chlorine, Temp Pens
Facebook
Facebook
Twitter
Twitter

Website
Website
Email
Email

Pinterest
Pinterest
YouTube
YouTube

Google Plus
Google Plus
Copyright © , All rights reserved.

Our mailing address is:

Ultrapens was originally published on Myron L Meters Blog

The Magic Button

The magic button says:

“Give resale pricing to those who enter the code “GIMMERESALE” at checkout.”

Thus spake the magic button.  Good until June 30, 2014 on Ultrameters only.

The Magic Button was originally published on Myron L Meters Blog

Using MyronLMeters.com

Use MyronLMeters.com Wisely

We have a lot to offer (if you know where to look)

MyronLMeters.com can tell you most of what you need to know…if you know where to look,  Want to know how to calibrate? Take a look in our videos OR manuals section. Want to send a meter in for repair? Click on the REPAIRS tab and you’ll find out how. Have a discontinued product?  We can tell you the new part number. Don’t know what solutions to use – there are several places you can find them.

Keep this email handy for reference and it will save you a phone call. Also, if you have suggestions to improve our website, please let us know! We want to make MyronLMeters,com as easy to use as the meters we sell.

 

Click this image on the home page OR click the OPERATIONS MANUALS page and you’ll find not only operations manuals, but material safety data sheets for solutions, product datasheets, and application bulletins.

 

Click this image on the home page OR click the REPAIRS tab and you’ll find out how to send your meter in for repair or calibration AND some of the most popular repair videos.

 

Click this image on the Myron L Meters home page OR click the VIDEOS tab OR visit our YOUTUBE channel and view the latest product overview and maintenance videos.

 

Click this image on our home page OR click TECHNICAL SUPPORT at the top of the home page and you’ll find Frequently Asked Questions, a handy contact form, links to MANUALS, REPAIRS, VIDEOS, terms, discontinued products, conversion charts and industry applications.

 

Want to know how to CALIBRATE? Check the OPERATIONS MANUALS page for your meter and open or download OR check out our VIDEOS OR search our BLOG for calibration. Check your OPERATIONS MANUAL for the proper solution.

 

Need help finding a product? Browse our sections on the HOME PAGE OR click PRODUCTS to search by category or parameter OR use the SEARCH box in the upper right of the page.

 

Using MyronLMeters.com was originally published on Myron L Meters Blog

Meter Maintenance: Myron L Meters


Protect Your Ultrameter

With Regular Maintenance

When you spend a thousand bucks for a meter, you want it to last. That’s why you bought a Myron L meter in the first place. And, while Myron L meters are renowned for durability, they need care: cleaning, calibration, storage solution, sensor replacement, and sometimes repair. Keep this blog post as a handy reference guide to Myron L meter maintenance.



Maintenance of the Ultrameter 6PFCE
These procedures apply to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter. 

 READ MORE ABOUT ULTRAMETER CARE

DOWNLOAD AN OPERATIONS MANUAL

pH Calibration of the Ultrameter 6PFCE
This procedure applies to the Ultrameter, PoolPro, TechPro, and D-6 Dialysate meter. 

READ HOW TO CALIBRATE

BUY PH BUFFER SOLUTIONS

VIDEO: Ultrameter II Cleaning the pH Sensor

BUY SENSOR STORAGE SOLUTION

VIDEO: Ultrameter II Replacing the pH Sensor

 

BUY A REPLACEMENT PH SENSOR

Repair And Maintenance of Myron L Meters

Need to have your meter repaired?
READ HOW TO SEND YOUR METER FOR REPAIR

Time to get a new meter?

GET YOUR NEW ULTRAMETER HERE
Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
Tumblr
Tumblr
Google Plus
Google Plus
Pinterest
Pinterest
YouTube
YouTube
Copyright © , All rights reserved.Our mailing address is:

Myron L Meters

3460 Marron Road #103-341

Oceanside, CA 92056

 

Meter Maintenance: Myron L Meters was originally published on Myron L Meters Blog

UltraEasy Ultrapens: Myron L Meters


Make your work life UltraEasy.



The Benefits of an Ultrapen

Portable, Durable, Accurate, and Easy

Perfect for field testing.
Same accuracy and range as an Ultrameter.
Tough.
Light.
Use as backup for your Ultrameter, or as field replacement.

Click Here to Find Your Ultrapen Now


Your Ultrapen Options

Ultrapens: PT1 (Conductivity, TDS, Salinity), PT2 (pH), PT3 (ORP), PT4 (Free Chlorine)

Ultrapen Sets: The Ultrapen Combo (1&2), The Ultrapen Set (1,2,3), The Ultrapen Complete (1,2,3,4), The Ultrapen Splash (for pool pros:1,2,4)

Ultrapen PT1 Product Overview – MyronLMeters.com

Ultrapen PT2 pH Pen Product Overview – MyronLMeters.com

Facebook
Facebook
Twitter
Twitter
Website
Website
Email
Email
YouTube
YouTube
Pinterest
Pinterest
Tumblr
Tumblr
Google Plus
Google Plus
Copyright © , All rights reserved.

Our mailing address is:

Myron L Meters

3460 Marron Road #103-341

Oceanside, CA 92056

UltraEasy Ultrapens: Myron L Meters was originally published on Myron L Meters Blog

Real-Time Field Water Analysis with an Ultrameter III 9P: Myron L Meters

tumblr_mrw572B3Q81qgr3lpo4_250

The Ultrameter III 9P Titration Kit allows for fast, accurate alkalinity, hardness & LSI titrations in the field.

The Ultrameter III 9P is based on the tried and tested design of the Ultrameter II 6P and measures conductivity, resistivity, TDS, pH, ORP, free chlorine and temperature quickly and accurately. The 9P also features new parameters that allow the user to perform titrations in the field. The Ultrameter III 9P has a unique method of performing alkalinity, hardness and LSI titrations that makes field monitoring fast and feasible.

How does it work?

The 9P titrations are based on conductometric titration methods that are possible with the 9P’s advanced conductivity cell and microprocessor based design. Titrations are chemically equivalent to standard methods using colorimetric techniques, but replace color change identification of equivalence points with changes in conductivity, thereby replacing a subjective, qualitative assessment with a quantitative one. This means the instrument determines the equivalence point instead of the user and the method of analyzing the equivalence point is objective, rather than subjective.

What is a conductometric titration?

A conductometric titration is performed just like a colorimetric titration, only the equivalence point is determined by a change in conductivity rather than a change in color. This is based on the fact that changes in ionic concentration that occur as constituents react with reagents change the electrical conductivity of the solution.

A simple example can be given of the titration of a strong acid with a strong base. The acid solution, before the addition of the base, has a very high conductance owing to the concentration and mobility of the small hydrogen ions.

With the addition of the base, the hydroxide reacts with the hydrogen to form water, thus reducing the hydrogen ion concentration and effectively lowering the conductivity of the solution. The conductivity continues to decrease until all the hydrogen ions are consumed in the reaction, but then sharply increases with the next addition of base, which contains highly conductive hydroxide ions. The solution conductivity then continues to increase with each base addition. The equivalence point in this example would be a clearly defined minimum point of lowest conductivity (see Figure 2).

Not all solutions will give a plot with an equivalence point that is as easy to distinguish as the sharp upturn found in a strong acid-base titration, however. The 9P plots several reagent additions beyond any changes in conductivity and matches the derived curve to the behavior of solutions of known concentration.

Is a conductometric titration a standard method?

(Standard method comparison to methods listed in the Standard Methods for the Examination of Water and Wastewater published by the American Public Health Assn., the American WaterWorks Assn. and the Water Environment Assn.)

Myron L’s conductometric titration methods are chemically equivalent to standard methods that use the same procedure, but with pH indicators. That means that they use the same reagents in the same sequence with the same theoretical approach. The difference lies in the 9P’s ability to determine the equivalence point based on numerical data, rather than subjective observation of a color change.

The alkalinity titration is modeled after standard method 2320. The sample is titrated with sulfuric acid and conductivity changes are recorded at each titration point.

The hardness titration is modeled after standard method 2340. To reduce the affects of high alkalinity in the form of bicarbonate, acid is first added to the sample. This shifts the bicarbonate toward carbonic acid, then carbon dioxide (reference the carbonic acid equilibrium), which is gassed off the sample. The sample is buffered above pH 10 (effectively pH 12) by the addition of sodium hydroxide. EDTA reagent is then added incrementally, with conductivity measured after each addition.

The LSI titration uses a simplified version of the thermodynamic equations for the determination of the scaling tendency of water developed in 1936 by Dr. Wilfred Langelier. The user simply titrates for alkalinity and hardness, then measures pH and temperature, and the 9P generates the saturation index value automatically.

Conductometric vs. Colorimetric

The benefits of determining the equivalence points by conductometric titrations are that the user does not have to interpret any results. The 9P does it for you using objective measurements. And the 9P is a faster method. For example, a typical colorimetric titration for hardness can take up to 30 drops of reagent, while the 9P method for the same concentration only requires six to eight drops. Colorimetric distinctions are sometimes hard to make, as well, especially when adding reagents drop by drop while trying to carefully observe the precise point at which the color changes—and that can lead to inaccurate data. This is especially true in colored or turbid solutions.

The conductometric method can also be used with very dilute solutions or for solutions for which there is no suitable indicator. The conductometric titration method gives you empirical results that are calculated for you, eliminating potential sources of error. And the measurements can be stored in memory for later data transfer using the optional U2CI software and bluDock Bluetooth hardware installed on the 9P . This makes data analysis and reporting seamless.

What else can the Ultrameter III 9P do?

Alkalinity, hardness, pH and temperature values used to compute the saturation index of a sample can be manipulated in the LSI Calculator function, allowing you to perform on the spot analysis of water balance scenarios. You can use historical or theoretical data to populate the required values in the calculator.

And the 9P titration kit comes with all required accessories, reagents, and calibration solutions (see Figure 6). Streamline your field testing with an Ultrameter III 9P from MyronLMeters, where you can save 10% when you order online.

Myron L Meters is the premier online retailer of accurate, reliable, and easy-to-use Myron L meters like the Ultrameter III 9P.  Save 10% when you order online at MyronLMeters.com. Find out more about the Ultrameter III 9P in our Myron L Meters – Ultrameter III 9P Titration Kit Overview video.

Real-Time Field Water Analysis with an Ultrameter III 9P: Myron L Meters was originally published on Myron L Meters Blog